Invariant metric on the extended Siegel–Jacobi upper half space
نویسندگان
چکیده
The real Jacobi group $G^J_n(\mathbb{R})$, defined as the semidirect product of Heisenberg ${\rm H}_n(\R)$ with symplectic ${\mr {Sp}}(n,\mathbb{R})$, admits a matrix embedding in $\text{Sp}(n+1,\mathbb{R})$. modified pre-Iwasawa decomposition $\rm{Sp}(n,\mathbb{R})$ allows us to introduce convenient coordinatization $S_n$ which for $G^J_1(\mathbb{R})$ coincides $S$-coordinates. Invariant one-forms on $G^J_n(\mathbb{R})$ are determined. formula 4-parameter invariant metric $G^J_1(\R)$ obtained sum squares 6 is extended $G^J_n(\R)$, $n\in\mathbb{N}$. We obtain three parameter Siegel-Jacobi upper half space $\tilde{\mathcal{X}}^J_n\approx\mathcal{X}^J_n\times \mathbb{R}$ by adding square an one-form two-parameter balanced $ {\mathcal{X}}^J_n =\frac{G^J_n(\mathbb{R})}{\mr{U}(n)\times\mathbb{R}}$.
منابع مشابه
On a Metric on Translation Invariant Spaces
In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.
متن کاملExtended automorphic forms on the upper half plane
A variant of Hadamard’s notion of partie finie is applied to the theory of automorphic functions on arithmetic quotients of the upper half-plane. As a consequence, conceptually simple proofs of the volume formula and the Maass-Selberg relations are given. This technique interprets Zagier’s idea of renormalization (Jour. Fac. Sci. Univ. Tokyo 28 (1982), 415–437) so that it can be generalized eas...
متن کاملReparameterization Invariant Metric on the Space of Curves
This paper focuses on the study of open curves in a manifold M , and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparameterization invariant metric on the space of immersions M = Imm([0,1], M) by pullback of a metric on the tangent bundle TM derived from the Sasaki...
متن کاملSharp Hardy-littlewood-sobolev Inequality on the Upper Half Space
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...
متن کاملEquivariant Vector Bundles on Drinfeld ’ S Upper Half Space Sascha
Let X ⊂ PdK be Drinfeld’s upper half space over a finite extension K of Qp. We construct for every GLd+1-equivariant vector bundle F on PdK , a GLd+1(K)equivariant filtration by closed subspaces on the K-Fréchet H(X ,F). This gives rise by duality to a filtration by locally analytic GLd+1(K)-representations on the strong dual H(X ,F). The graded pieces of this filtration are locally analytic in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2021
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2020.104049